QuantiFERON-TB

Randall Reves

Major Problems with the TST

- TST responses are often not read
 - Patient and public health implications
 - Cost implications (follow up and re-testing)
- False positive TST due to
 - BCG
 - NTM
- Inaccuracy of measuring induration
 - Subjective interpretation
 - Conscious or unconscious bias

History of the QuantiFERON-TB Test

- Interferon-γ test developed in the late 1980's for detection of TB in cattle
- Pre-clinical and initial clinical studies conducted in Australia to set test parameters and cut-offs
- Large-scale, pivotal clinical studies conducted by the CDC and the Walter Reed Army Institute of Research
- FDA approval granted in November 2001

Immune Response to TB Infection and Disease

Why Measure Interferon-γ

- IFN- $\gamma \equiv CMI$
- Antigen specific
- Secreted, measurable, stable
- Absent from normal circulation
- Extensive literature showing importance of IFN-γ in TB infection

QuantiFERON®-TB Test Method

Stage 1 Whole Blood Culture

Heparinised whole blood

Transfer undiluted whole blood into wells of a culture plate and add antigens

Culture overnight at 37°C

TB infected individuals respond by secreting IFN-g

Stage 2 I FN-gamma ELISA

Harvest Plasma from above settled cells and incubate 60 min in 'Sandwich' ELISA

Wash, add Substrate, incubate 30 min then stop reaction

Measure OD and determine IFN-g levels

Test Interpretation

Test Result	Nil	HuPPD	AvPPD	Mitogen
Negative	_	_	_	+++
MTB Infection indicated	_	+++	+	+++
Atypical mycobacteria	_	+	+++	+++
Indeterminate	_	_	_	_

Compare QuantiFERON®-TB with TST in a high-risk group

- No "gold standard for LTBI"
- Remember TST is our "Bronze standard"
- Test <u>utility</u> in high risk LTBI subjects
- Objective of QFT/TST comparison?
 - Should be similar but not identical
 - Ideally should be better
 - Do differences tell us anything?

QFT (QuantiFERON-TB Test)
Vs.
TST (Tuberculin Skin Test)
Study

- Sponsored by CDC
- Published in JAMA 2001;286:1740-1747

Study Objectives

 Assess agreement & concordance between QFT and TST

• Identify factors associated with discordance

Enrollment

- Enrolled 1,471 at 5 sites minus 248 excluded
 - 98 "low risk" for exposure
 - 944 "high risk" for LTBI
 - 94 "TB suspects"
 - 87 "culture-confirmed TB" after Rx

Results

• 341 of 1223 (28%) QFT positive

• 390 of 1223 (32%) TST positive

• 84% agreement overall

Low-Risk Subjects

TST X OFT

ISI A Q.	L T		Q:	FT
			Mtb	not Mtb
TST	positive	Count	0	2
		% of Total	0 %	2.0 %
	negative	Count	2	94
		% of Total	2.0 %	95.9%

Kappa= NA

- **Agreement** = **95.9%**
- Assuming no LTBI
 - QFT "specificity" = 98.0%
 - $\overline{-}$ TST "specificity" = 98.0%

CDC QFT study of high risk subjects

Kappa 0.56, agreement 84.1%

TST+ / QFT- Discord

(High-Risk Group)

VARIABLI	E	Odds Ratio	p value
BCG	None	1.0	
	Unknown	2.37	.05
	Vaccinated	6.48	< .001
NTM by QFT	No	1.0	
	Yes	2.47 (12)	.02
Study Site	A	1.0	
	В	1.56	.48
	C	3.46	.03
	D	4.23	.01
	E	3.50	.03

Discordance in TST - Tubersol and Aplisol

Low Risk (n = 1555):

kappa = 0.482

Current TB disease (n = 99):

TB Suspects with + Cultures for Mtb

•TS	T X QFT			Q1	FT
				Mtb	not Mtb
	TST	positive	Count	43	9
			% of Total	76.8 %	16.1 %
		negative	Count	3	1
			% of Total	5.4 %	1.8%

- •Agreement = 76.8%
- OFT Sensitivity = 82.2%
- •TST Sensitivity = 92.9%

After Treatment for Culture-Confirmed TB

• TST X QFT			QFT		
				Mtb	not Mtb
	TST	positive	Count	56	27
			% of Total	64.4 %	31.0 %
		negative	Count	0	4
			% of Total	0 %	4.6 %

- Agreement = 69.0%
- QFT Sensitivity = 64.4 %
- TST Sensitivity = 95.4 %

Effect of Active TB & Rx

Factors Not Associated with TST / QFT Discord

- Age
- Sex
- Race
- Risk for HIV
- TST in prior year

- Delay to blood incubation for QFT
- Incubation period
- Delay to ELISA
- Time of TST reading

Limitations

- lack of a "gold standard" for Latent TB Infection
 - can not extrapolate sensitivity for LTBI from culture-confirmed TB after initiation of Rx
 - difficult to prove superiority of a test w/o follow-up
- small number of TB suspects all of which had Rx for undetermined periods
- different Mtb PPDs used for QFT and TST
- PPD from only one NTM included & no skin test for MAC included

Conclusions

- High QFT specificity in "low risk" people (98%)
- Good QFT / TST agreement for "high risk" (84%)
- QFT / TST discordance associated with:
 - Prior BCG
 - Site-bias in reading TST
 TB Treatment
- NTM immune reactivity

QuantiFERON-TB

Conclusions from the animal model and clinical studies in humans

Developed in Cattle – A Good Model for Human TB

M. bovis PPD injected intradermally and read 72 hrs later

M. avium PPD is used as well for Comparative Testing

- Bovine TB is an excellent model for human TB
- Immune response to infection is very similar
- Most infected cattle have LTBI
- Active TB disease normally found only in old or undernourished animals

Australian Field Trial Data (1989/90) TST comparison

Bovine IFN-g Assay

TST + 92 53 -- 67 6090

IF the TST was used as the gold standard:

Sensitivity of the bovine test = 92/145 (63.4%)

Australian Field Trial Data (1989/90)

Necropsy & culture as gold standard

Animals Tested from Infected Herds n=6302

Test	No. Positive	Sensitivity
TST	82	65.6%
Bovine IFN-γ	117	93.6%
TST &/or Bovine IFN-γ	119	95.2%
M. bovis culture*	125	

^{*} Culture was performed on multiple tissues after autopsy

Wood & Rothel, Vet Micro 40: 125-135 (1994)

Reported sensitivities for Bovine IFN-γ test

No. Tested	No. with M. bovis	Sensitivity	Reference
39	39	53.8 %	Ritacco et al (1991) Argentina
843	10	90.0 %	Ryan (1992) New Zealand
1362	22	81.8 %	Wood et al (1992) Australia
474	39	97.4 %	Dondo et al (1993) Italy
240	27	96.3 %	Buonavoglia et al (1995) <i>Italy</i>
1619	154	87.7 %	Domingo et al (1995) Spain
6210	85	85.8 %	Monaghan et al (1995) Ireland
208	208	96.6 %	Dondo et al (1996) Italy
203	203	87.7 %	Monaghan et al (1997) Ireland
11,198	787	88.8 %	Total